Extensions 1→N→G→Q→1 with N=C3xD20 and Q=C22

Direct product G=NxQ with N=C3xD20 and Q=C22
dρLabelID
C2xC6xD20240C2xC6xD20480,1137

Semidirect products G=N:Q with N=C3xD20 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xD20):1C22 = D5xD4:S3φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20):1C2^2480,553
(C3xD20):2C22 = S3xD4:D5φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20):2C2^2480,555
(C3xD20):3C22 = D15:D8φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20):3C2^2480,557
(C3xD20):4C22 = D20:10D6φ: C22/C1C22 ⊆ Out C3xD201208-(C3xD20):4C2^2480,570
(C3xD20):5C22 = Dic6:D10φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20):5C2^2480,574
(C3xD20):6C22 = D20:D6φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20):6C2^2480,578
(C3xD20):7C22 = S3xD4xD5φ: C22/C1C22 ⊆ Out C3xD20608+(C3xD20):7C2^2480,1097
(C3xD20):8C22 = D5xD4:2S3φ: C22/C1C22 ⊆ Out C3xD201208-(C3xD20):8C2^2480,1098
(C3xD20):9C22 = D20:13D6φ: C22/C1C22 ⊆ Out C3xD201208-(C3xD20):9C2^2480,1101
(C3xD20):10C22 = D20:14D6φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20):10C2^2480,1102
(C3xD20):11C22 = S3xQ8:2D5φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20):11C2^2480,1109
(C3xD20):12C22 = D20:16D6φ: C22/C1C22 ⊆ Out C3xD201208-(C3xD20):12C2^2480,1110
(C3xD20):13C22 = D20:17D6φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20):13C2^2480,1111
(C3xD20):14C22 = S3xD40φ: C22/C1C22 ⊆ Out C3xD201204+(C3xD20):14C2^2480,328
(C3xD20):15C22 = D40:S3φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20):15C2^2480,330
(C3xD20):16C22 = C40:5D6φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20):16C2^2480,332
(C3xD20):17C22 = C40:8D6φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20):17C2^2480,334
(C3xD20):18C22 = C3xD5xD8φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20):18C2^2480,703
(C3xD20):19C22 = C3xD40:C2φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20):19C2^2480,707
(C3xD20):20C22 = C2xC3:D40φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20):20C2^2480,376
(C3xD20):21C22 = D20:19D6φ: C22/C2C2 ⊆ Out C3xD201204+(C3xD20):21C2^2480,377
(C3xD20):22C22 = C2xD20:5S3φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20):22C2^2480,1074
(C3xD20):23C22 = C2xS3xD20φ: C22/C2C2 ⊆ Out C3xD20120(C3xD20):23C2^2480,1088
(C3xD20):24C22 = S3xC4oD20φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):24C2^2480,1091
(C3xD20):25C22 = D20:25D6φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):25C2^2480,1093
(C3xD20):26C22 = D20:29D6φ: C22/C2C2 ⊆ Out C3xD201204+(C3xD20):26C2^2480,1095
(C3xD20):27C22 = C2xC15:D8φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20):27C2^2480,372
(C3xD20):28C22 = D20:21D6φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):28C2^2480,375
(C3xD20):29C22 = C2xD20:S3φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20):29C2^2480,1075
(C3xD20):30C22 = C2xC20:D6φ: C22/C2C2 ⊆ Out C3xD20120(C3xD20):30C2^2480,1089
(C3xD20):31C22 = D20:24D6φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):31C2^2480,1092
(C3xD20):32C22 = D20:26D6φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):32C2^2480,1094
(C3xD20):33C22 = C6xD40φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20):33C2^2480,696
(C3xD20):34C22 = C3xC8:D10φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):34C2^2480,701
(C3xD20):35C22 = C6xD4:D5φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20):35C2^2480,724
(C3xD20):36C22 = C3xD4.D10φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):36C2^2480,725
(C3xD20):37C22 = C6xD4xD5φ: C22/C2C2 ⊆ Out C3xD20120(C3xD20):37C2^2480,1139
(C3xD20):38C22 = C3xD4:6D10φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):38C2^2480,1141
(C3xD20):39C22 = C6xQ8:2D5φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20):39C2^2480,1143
(C3xD20):40C22 = C3xD5xC4oD4φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):40C2^2480,1145
(C3xD20):41C22 = C3xD4:8D10φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20):41C2^2480,1146
(C3xD20):42C22 = C6xC4oD20φ: trivial image240(C3xD20):42C2^2480,1138

Non-split extensions G=N.Q with N=C3xD20 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xD20).1C22 = D60.C22φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20).1C2^2480,556
(C3xD20).2C22 = D30.8D4φ: C22/C1C22 ⊆ Out C3xD201208-(C3xD20).2C2^2480,558
(C3xD20).3C22 = D5xD4.S3φ: C22/C1C22 ⊆ Out C3xD201208-(C3xD20).3C2^2480,559
(C3xD20).4C22 = D12:10D10φ: C22/C1C22 ⊆ Out C3xD201208-(C3xD20).4C2^2480,565
(C3xD20).5C22 = D20.9D6φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20).5C2^2480,567
(C3xD20).6C22 = D20.24D6φ: C22/C1C22 ⊆ Out C3xD202408-(C3xD20).6C2^2480,569
(C3xD20).7C22 = D20.10D6φ: C22/C1C22 ⊆ Out C3xD202408-(C3xD20).7C2^2480,573
(C3xD20).8C22 = S3xQ8:D5φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20).8C2^2480,579
(C3xD20).9C22 = D12:D10φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20).9C2^2480,580
(C3xD20).10C22 = D15:SD16φ: C22/C1C22 ⊆ Out C3xD201208-(C3xD20).10C2^2480,581
(C3xD20).11C22 = D60:C22φ: C22/C1C22 ⊆ Out C3xD201208+(C3xD20).11C2^2480,582
(C3xD20).12C22 = D20.13D6φ: C22/C1C22 ⊆ Out C3xD202408-(C3xD20).12C2^2480,584
(C3xD20).13C22 = D20.14D6φ: C22/C1C22 ⊆ Out C3xD202408-(C3xD20).13C2^2480,590
(C3xD20).14C22 = D20.D6φ: C22/C1C22 ⊆ Out C3xD202408+(C3xD20).14C2^2480,592
(C3xD20).15C22 = D20.27D6φ: C22/C1C22 ⊆ Out C3xD202408-(C3xD20).15C2^2480,593
(C3xD20).16C22 = D20.28D6φ: C22/C1C22 ⊆ Out C3xD202408-(C3xD20).16C2^2480,594
(C3xD20).17C22 = D20.16D6φ: C22/C1C22 ⊆ Out C3xD202408+(C3xD20).17C2^2480,597
(C3xD20).18C22 = D20.17D6φ: C22/C1C22 ⊆ Out C3xD202408-(C3xD20).18C2^2480,598
(C3xD20).19C22 = D20.29D6φ: C22/C1C22 ⊆ Out C3xD202408-(C3xD20).19C2^2480,1104
(C3xD20).20C22 = S3xC40:C2φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20).20C2^2480,327
(C3xD20).21C22 = C40:1D6φ: C22/C1C22 ⊆ Out C3xD201204+(C3xD20).21C2^2480,329
(C3xD20).22C22 = D6.1D20φ: C22/C1C22 ⊆ Out C3xD202404(C3xD20).22C2^2480,348
(C3xD20).23C22 = D40:7S3φ: C22/C1C22 ⊆ Out C3xD202404-(C3xD20).23C2^2480,349
(C3xD20).24C22 = C40.2D6φ: C22/C1C22 ⊆ Out C3xD202404-(C3xD20).24C2^2480,350
(C3xD20).25C22 = C40:14D6φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20).25C2^2480,331
(C3xD20).26C22 = D24:6D5φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20).26C2^2480,333
(C3xD20).27C22 = Dic6.D10φ: C22/C1C22 ⊆ Out C3xD202404(C3xD20).27C2^2480,352
(C3xD20).28C22 = D40:5S3φ: C22/C1C22 ⊆ Out C3xD202404(C3xD20).28C2^2480,353
(C3xD20).29C22 = D30.3D4φ: C22/C1C22 ⊆ Out C3xD202404(C3xD20).29C2^2480,354
(C3xD20).30C22 = C3xD8:D5φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20).30C2^2480,704
(C3xD20).31C22 = C3xD5xSD16φ: C22/C1C22 ⊆ Out C3xD201204(C3xD20).31C2^2480,706
(C3xD20).32C22 = C3xSD16:3D5φ: C22/C1C22 ⊆ Out C3xD202404(C3xD20).32C2^2480,709
(C3xD20).33C22 = C3xQ16:D5φ: C22/C1C22 ⊆ Out C3xD202404(C3xD20).33C2^2480,711
(C3xD20).34C22 = C3xQ8.D10φ: C22/C1C22 ⊆ Out C3xD202404(C3xD20).34C2^2480,712
(C3xD20).35C22 = C2xC6.D20φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20).35C2^2480,386
(C3xD20).36C22 = D20.31D6φ: C22/C2C2 ⊆ Out C3xD202404(C3xD20).36C2^2480,387
(C3xD20).37C22 = D60:30C22φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20).37C2^2480,388
(C3xD20).38C22 = C60.63D4φ: C22/C2C2 ⊆ Out C3xD202404-(C3xD20).38C2^2480,389
(C3xD20).39C22 = D20.39D6φ: C22/C2C2 ⊆ Out C3xD202404-(C3xD20).39C2^2480,1077
(C3xD20).40C22 = D20.34D6φ: C22/C2C2 ⊆ Out C3xD202404(C3xD20).40C2^2480,373
(C3xD20).41C22 = C60.36D4φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20).41C2^2480,374
(C3xD20).42C22 = C2xC30.D4φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20).42C2^2480,382
(C3xD20).43C22 = D20.37D6φ: C22/C2C2 ⊆ Out C3xD202404(C3xD20).43C2^2480,383
(C3xD20).44C22 = D20.38D6φ: C22/C2C2 ⊆ Out C3xD202404(C3xD20).44C2^2480,1076
(C3xD20).45C22 = C6xC40:C2φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20).45C2^2480,695
(C3xD20).46C22 = C3xD40:7C2φ: C22/C2C2 ⊆ Out C3xD202402(C3xD20).46C2^2480,697
(C3xD20).47C22 = C3xC8.D10φ: C22/C2C2 ⊆ Out C3xD202404(C3xD20).47C2^2480,702
(C3xD20).48C22 = C6xQ8:D5φ: C22/C2C2 ⊆ Out C3xD20240(C3xD20).48C2^2480,734
(C3xD20).49C22 = C3xC20.C23φ: C22/C2C2 ⊆ Out C3xD202404(C3xD20).49C2^2480,735
(C3xD20).50C22 = C3xD4:D10φ: C22/C2C2 ⊆ Out C3xD201204(C3xD20).50C2^2480,742
(C3xD20).51C22 = C3xD4.8D10φ: C22/C2C2 ⊆ Out C3xD202404(C3xD20).51C2^2480,743
(C3xD20).52C22 = C3xQ8.10D10φ: C22/C2C2 ⊆ Out C3xD202404(C3xD20).52C2^2480,1144
(C3xD20).53C22 = C3xD4.10D10φ: trivial image2404(C3xD20).53C2^2480,1147

׿
x
:
Z
F
o
wr
Q
<